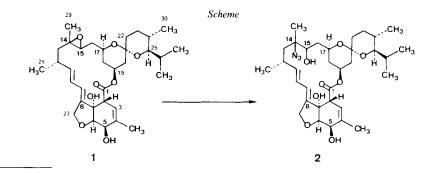
49. Preparation of Vicinal Azidohydrins by Reaction of Oxiranes with Triethylaluminium/Hydrogen Azide

by Hari Babu Mereyala¹) and Bruno Frei²)*


Laboratorium für Organische Chemie der Eidgenössischen Technischen Hochschule, Universitätstrasse 16, ETH-Zentrum, CH-8092 Zürich

(9.I.86)

A novel, mild, and highly stereoselective transformation of epoxides to azidohydrins by treatment with $E_{t_3}Al/HN_3$ in toluene is described. As an example for the versatility of the reaction, a polyfunctional compound, 14,15-epoxy-14,15-dihydronilbemycin D (1), was transformed to 14-azido-14,15-dihydro-15-hydroxymilbemycin D (2) in 61% yield.

1. Introduction. – Vicinal azidohydrins are generally obtained from oxiranes by a reaction with alkali azide in a suitable solvent [1-12]. Phase-transfer reagents are also used for the same transformations [13]. The reactions are often carried out under either alkaline or acidic conditions, and they usually require high temperatures and/or long reaction times. As side reactions, isomerizations, epimerization, and rearrangements may be induced by the alkaline conditions of the reactions with alkali azides. To the best of our knowledge, there is no report on the cleavage of epoxides derived from medium- to large-ring olefins by any of these methods. Medium rings with epoxy functions are known to be highly resistant to nucleophilic reagents, or they give rise to transannular-reaction products [14]. Thus, it is our opinion that most methods known to date for the preparation of azidohydrins are limited to open-chain epoxides, small-ring epoxides, and epoxides activated by neighboring groups.

As part of a program on chemical modifications of milbemycin D [15], we planned to transform 14,15-epoxy-14,15-dihydromilbemycin D (1) [16]³) into a vicinal azidohydrin

¹) New address: National Chemical Laboratory, Pune-411008, India.

²) New address: Ciba-Geigy Ltd., Agricultural Division, CH-4002 Basle.

³) Numbering of the milbemycin molecule according to [15].

(Scheme). Since reaction of the polyfunctional epoxide 1 with NaN₃ led to decomposition of the starting material, and no azidohydrin could be detected, it was necessary to develop a new, milder process. Several years ago, *Nagata et al.* had introduced Et₃Al/HCN and Et₂AlCN as reagents for the smooth cleavage of epoxides to give β -cyanohydrins [17] [18]. Therefore, we selected the corresponding azide reagents Et₃Al/ HN₃ or Et₂AlN₃ [19] [20] as the reagents of choice⁴).

2. Results and Discussion. – Indeed, the reaction of the epoxide 1 with Et_3Al/HN_3 in toluene was a highly selective process and gave 14-azido-14,15-dihydro-15-hydroxymilbemycin D (2) in 61% yield. The versatility of Et_3Al/HN_3 as a mild and efficient reagent for the transformation epoxide \rightarrow azidohydrin is further illustrated by 6 representative examples given in the *Table*.

Entry	Epoxide		Temperature	Reaction Time	Azidohydrin		Yield
1	\bigcirc	3	-70°	15 min	OH N ₃	9	72%
2	Ŕ	4	-70°	25 min		10	68%
3	A	5	r.t.	25 min		11	90%
4	\bigcirc	6	r.t.	2.5 h		12	83%
5		7	r.t.	3 h		13	68%
6		8	-70°	15 min	N3 ОН	14	90%

Table. Reactions of the Epoxides 3 8 with $E_{13}A_{1}/HN_{3}$ in Toluene

A general procedure is described: the reagent is prepared *in situ* by reaction of equimolar quantities of Et_3Al with HN_3 in a non-polar solvent (*e.g.* toluene or benzene). The results in the *Table* indicate that the transformation of medium- and large-ring epoxides require higher temperatures and longer reaction times (*entries 4, 5*) than that of the epoxycyclohexanes **3** and **4**. A high regioselectivity was observed to yield tertiary azides (*entries 2, 3*), and *trans*-azidohydrins are the products. It is noteworthy that the reaction of the epoxide **4** with NaN₃ was less selective, leading to the expected secondary azide **15** as the major product, in addition to the azidohydrin **10** (ratio *ca.* 2:1) [25].

This work was supported by *Ciba-Geigy Ltd.*, Basle. We are indebted to the following persons for their help: Miss *B. Brandenberg*, Mr. *F. Fehr* and Mr. *M. Langenauer* (NMR), Mrs. *L. Golgowski* and Prof. *J. Seibl* (MS), and Mr. *D. Manser* (elemental analysis). The authors would also like to thank Dr. *Ernst Müller*, University of Innsbruck, for helpful discussions.

⁴) The reagent described here was prepared *in situ*, and it was not determined whether it is a complex or Et₂AlN₃. After this work was completed [21], a method for the cleavage of oxiranes with HN₃/DMF was published [22]. Furthermore, mild syntheses of *O*-protected azidohydrins by treatment of the epoxide with Me₃SiN₃ in the presence of a Ti or V catalyst [23], or Et₂AlF [24] were described.

Experimental Part

General. See [26], except as noted below. Column chromatography (CC): silica gel (SiO₂) 60 (*Merck*; 0.040-0.063 mm, 230-400 mesh ASTM). ¹H-NMR spectra: *Varian EM-390* instrument (90 MHz) or *Bruker WP-80/CW* (80 MHz); CDCl₃ solns. or, exceptionally (as indicated below) CCl₄ solns.

1. Et_3Al/HN_3 Reagent. To dry toluene (8 ml) was added neat Et_3Al (1.36 ml, 10 mmol) at 0° under Ar with efficient stirring. A soln. of HN₃ [27] (dried over Na₂SO₄; 6.1 ml, 7.05% in C₆H₆, 10 mmol) was added slowly maintaining the temp. between -30 and -20°, and the mixture was then brought to r.t.

2. Transformation of the Epoxides to the Azidohydrins. 2.1. General Procedure. To a soln. of the epoxide⁵) (5 mmol) in dry toluene (4 ml) under Ar at -70° was slowly added, by means of a cannula, the Et₃Al/HN₃ reagent. After completion of the reaction (TLC), Et₂O (100 ml) was added, and the mixture was slowly poured into a vigorously stirred soln. of conc. HCl (10 ml) in ice-water (300 ml). The Et₂O layer was worked up to yield the azidohydrin which was purified by CC (SiO₂; Et₂O/hexane gradients).

2.2. 14,15-Epoxy-14,15-dihydromilbemycin D (1; 500 mg, 0.88 mmol) in toluene (5 ml) was treated with Et₃Al/HN₃ (17.4 ml) first at 0°, then at r.t. for 2 h. Workup by the addition of Et₂O (200 ml), a 1:1 mixture of Na₂SO₄·10 H₂O/*Celite* (6 g), and MeOH (1 ml), filtration, and CC (CH₂Cl₂/acetone 25:1) gave 14-azido-14,15-dihydro-15-hydroxymilbemycin D (2; 328 mg, 61%). M.p. 183° (MeOH). IR (CHCl₃): 3620w, 3560w, 3450w, 2950s, 2920s, 2860m, 2100s, 1700m, 1445m, 1430m, 1375m, 1335m, 1310m, 1290m, 1260m, 1180m, 1160m, 1145m, 1110m, 1070m (br.), 1030m, 1005s, 975m, 965m, 905w, 885w, 860m.¹H-NMR (300 MHz, characteristic signals): 0.79, 0.82, 0.99, 1.01 (4d, J = 7, CH₃-C(12), CH₃-C(24), (CH₃)₂CH-C(25)); 1.22 (s, CH₃-C(14)); 1.86 (m, $w_{1/2} = 6$, $CH_3-C(4)$; 2.31 (d, J = 8, OH); 3.02 (dd, J = 9.5, 2.0, H-C(25)); 3.28-3.34 (m with q character, J = 2.4, H-C(2); 3.76–3.88 (m, H-C(17)); 3.92–4.02 (m, H-C(15)); 3.97 (d, J = 6.0, H-C(6)); 4.26–4.36 (m, H-C(5)); 4.71 (*AB*, *J* = 14, split into *m*, $w_{Y_2} = 3$, $\delta_A = 4.66$, $\delta_B = 4.76$, 2 H–C(27)); 5.08 (*s*, OH); 5.38 (*m*, $w_{Y_2} = 5$, H–C(3)); 5.40-5.52 (m, H-C(19)); 5.65 (dd, J = 12.5, 9.5, H-C(11)); 5.84-6.00 (m, H-C(9), H-C(10)). ¹³C-NMR (75) MHz): 14.2, 17.3, 18.7, 19.8, 20.8, 23.6 (6q, 6 CH₃); 28.0, 35.7, 36.7, 37.1, 40.3, 43.7 (6t, C(13), C(16), C(18), C(20), C(22), C(23)); 28.3, 31.5, 34.8, 45.0 (4d, C(2), C(12), C(24), (CH₃)₂CH); 64.7 (d, C(15)); 65.9 (s, C(14)); 67.7, 67.7, 69.4, 78.3, 78.5 (5d, C(5), C(6), C(17), C(19), C(25)); 80.5 (s, C(7)); 97.4 (s, C(21)); 117.1, 120.0, 124.1, 142.9 (4d, C(3), C(9), C(10), C(11)); 137.9, 140.8 (2s, C(4), C(8)); 175.0 (s, C(1)). Anal. calc. for $C_{33}H_{49}N_3O_8$ (615.74): C 64.37, H 8.02, N 6.82; found: C 64.43, H 8.10, N 6.70.

2.3. 1,2-Epoxycyclohexane (3; 500 mg, 5.1 mmol) in tolucne (4 ml) was treated with Et₃Al/HN₃ (15 ml) at -70° for 15 min yielding 2-azidocyclohexanol [1] [2] (9; oil; 521 mg, 72%).

2.4. *1,2-Epoxy-1-methylcyclohexane* (**4**; 50 mg, 0.45 mmol) in toluene (0.5 ml) was treated with Et₃Al/HN₃ (1.5 ml) at -70° for 25 min yielding (*1* RS,2RS)-2-azido-2-methylcyclohexanol (**10**; oil; 47 mg, 68%). IR: 3570w (br.), 3420w (br.), 2980w (sh), 2940s, 2860m, 2100s, 1460w (sh), 1445w, 1430w (sh), 1230w (br.), 1200w (br.), 1150w, 1105m, 1075m, 1050m (sh), 1040m (sh), 1025w (sh), 980w, 840w. ¹H-NMR (90 MHz): 1.60 (s, CH₃-C(2)); 1.00 2.20 (m, 9 H); 3.50-3.60 (m, H-C(1)).

2.5. *I-Oxaspiro[2.5]octane* (5 [28]; 50 mg, 0.45 mmol) in toluene (0.4 ml) was treated with Et₃Al/HN₃ (1.5 ml) at r.t. for 25 min affording (*1'-azidocyclohexyl)methanol* (11; oil; 62 mg, 90%). IR: 3600w (sh), 3580w, 3440w (br.), 3300w (br.), 2920s, 2840m, 2100s, 1440m, 1375w, 1355w, 1300m (sh), 1290m, 1270m, 1250m, 1215w, 1175w, 1155w, 1120m, 1090w, 965w, 910w, 870w. ¹H-NMR (90 MHz, CCl₄): 1.00 2.20 (m, 11 H); 3.20–3.80 (m, CH₂OH).

2.6. *1,2-Epoxycyclooctane* (**6**; 270 mg, 2.14 mmol) in toluene (2 ml) was treated with Et₃Al/HN₃ (7 ml) at r.t. for 2.5 h yielding (*1* RS,2 RS)-2-azidocyclooctanol (**12**; oil; 300 mg, 83%). IR: 3610w (sh), 3580w, 3450w (br.), 3320w (br.), 2920s, 2850m, 2100s, 1600w (br.), 1470w (sh), 1460w, 1440w, 1430w (sh), 1380w, 1350w (br.), 1310w (sh), 1290w (sh), 1270w (sh), 1250m, 1210w (sh), 1140w, 1110w, 1080w, 1050w, 1000w, 975w, 905w. ¹H-NMR (80 MHz): 1.30-2.15 (m, 12 H); 2.37 (m, $w_{Y_2} = ca. 4$, OH); 3.35 3.85 (m, H–C(1), H–C(2)).

2.7. *1,2-Epoxycyclododecane* (7; 140 mg, 0.77 mmol) in toluene (2 ml) was treated with Et₃Al/HN₃ (5 ml) at r.t. for 3 h yielding (*1* RS,2RS)-*2-azidocyclododecanol* (13; oil; 118 mg, 68%). IR: 3580w, 3400w, 2925s, 2860s, 2100s, 1460m, 1440m, 1390w (sh), 1370m, 1325m, 1300w, 1270m (sh), 1265m (sh), 1250m, 1190w, 1150w, 1140w, 1120w, 1090w, 1070w, 1040m, 1030m, 1010w, 950w, 910w, 870w. ¹H-NMR (80 MHz): 1.12-1.80 (m, 21 H); 3.25-3.70 (m, H-C(2)); 3.75-4.12 (m, H-C(1)).

2.8. Epoxystyrene (8; 600 mg, 5.0 mmol) in toluene (4 ml) was treated with Et_3Al/HN_3 (15 ml) at -70° for 15 min yielding 2-azido-2-phenylethanol (14; oil; 732 mg, 90%). IR: 3625w (sh), 3600w, 3450w (br.), 3320w (br.),

⁵) The epoxides 1, 3, 4, and 6–8 were prepared by reaction of the corresponding olefins with *m*-chloroperbenzoie acid.

3060w, 3020w, 2960w, 2920w, 2870w, 2100s, 1600w (br.), 1490w, 1450w, 1380w, 1370w, 1340w, 1300w, 1270w, 1240m, 1205w, 1170w, 1080w (sh), 1060w (sh), 1045m, 1030w (sh), 1000w (sh), 905m, 870w. ¹H-NMR (80 MHz): 2.00 (t, J = 6, OH); 3,73 (dd, J = 7, 6, 2 H–C(1)); 4.74 (t, J = 7, H–C(2)); 7.35–7.60 (m, C₆H₅).

REFERENCES

- [1] W. E. McEwen, W. E. Conrad, C. A. VanderWerf, J. Am. Chem. Soc. 1952, 74, 1168.
- [2] C.A. VanderWerf, R.Y. Heisler, W.E. McEwen, J. Am. Chem. Soc. 1954, 76, 1231.
- [3] J. H. Boyer, F. C. Canter, J. Hamer, R. K. Putney, J. Am. Chem. Soc. 1956, 78, 325.
- [4] K. Ponsold, Chem. Ber. 1962, 95, 1727.
- [5] F. Nakatsubo, T. Fukuyama, A.J. Cocuzza, Y. Kishi, J. Am. Chem. Soc. 1977, 99, 8115.
- [6] M. Weitzberg, Z. Aizenshtat, P. Jerushalmy, J. Blum, J. Org. Chem. 1980, 45, 4252.
- [7] R. Schwesinger, M. Breuninger, B. Gallenkamp, K. H. Müller, D. Hunkler, H. Prinzbach, Chem. Ber. 1980, 113, 3127.
- [8] E.P. Müller, Helv. Chim. Acta 1982, 65, 1617.
- [9] G. Swift, D. Swern, J. Org. Chem. 1967, 32, 511.
- [10] M. M. Campbell, R. C. Craig, J. Redpath, D. S. Savage, T. Sleigh, J. Chem. Soc., Perkin Trans. 1 1979, 3042.
- [11] R.D. Gutherie, D. Murphy, J. Chem. Soc. 1963, 5288.
- [12] M. Lorenzin, A. Guerriero, F. Pietra, J. Org. Chem. 1980, 45, 1705.
- [13] Y. Nakajima, R. Kinishi, J. Oda, Y. Inouye, Bull. Chem. Soc. Jpn. 1977, 50, 2025.
- [14] G.H. Posner, D.Z. Rogers, J. Am. Chem. Soc. 1977, 99, 8208.
- [15] H. Mishima, J. Ide, S. Muramatsu, M. Ono, J. Antibiotics 1983, 36, 980.
- [16] Jpn. Kokai Tokkyo Koho, JP 57,139,080; 1982 (Chem. Abstr. 98: 89076y).
- [17] W. Nagata, M. Yoshioka, T. Okumura, Tetrahedron Lett. 1966, 847.
- [18] W. Nagata, M. Yoshioka, T. Okumura, J. Chem. Soc. (C) 1970, 2365.
- [19] M. I. Prince, K. Weiss, J. Organomet. Chem. 1966, 5, 584.
- [20] a) J. Müller, K. Dehnicke, Z. Anorg. Allg. Chem. 1966, 348, 261; b) J. Müller, K. Dehnicke, J. Organomet. Chem. 1968, 12, 37; c) K. Dehnicke, J. Strähle, D. Seybold, J. Müller, J. Organomet. Chem. 1966, 6, 298.
- [21] Europäische Offenlegungsschrift EP 0147852, 1985.
- [22] S. Saito, N. Bunya, M. Inaba, T. Moriwake, S. Torii, Tetrahedron Lett. 1985, 5309.
- [23] C. Blandy, R. Choukroun, D. Gervais, Tetrahedron Lett. 1983, 4189.
- [24] K. Maruoka, H. Sano, H. Yamamoto, Chem. Lett. 1985, 599.
- [25] E.P. Müller, University of Innsbruck, private communication.
- [26] A.P. Alder, H.R. Wolf, O. Jeger, Helv. Chim. Acta 1980, 63, 1833.
- [27] a) Hans Wolff, Org. React. 1946, III, 327; b) V. Braun, Justus Liebigs Ann. Chem. 1931, 490, 100.
- [28] E.J. Corey, M. Chaykovsky, Org. Synth. 1969, 49, 78.